slimmouse » Sun Apr 20, 2014 4:31 am wrote:My, my. All our brains are full of holes.......wormholes !
Stuart Hammeroff has been saying that since the 70s. My first introduction to the idea was actually a strange children's book called Space-Time and Beyond: Toward an Explanation of the Unexplainable.
With respect to the brain as radio, recent development of functional interest:
Via: http://news.harvard.edu/gazette/story/2 ... -its-head/
... neuroscientists have made a discovery that turns 160 years of neuroanatomy on its head.
Myelin, the electrical insulating material in the body long known to be essential for the fast transmission of impulses along the axons of nerve cells, is not as ubiquitous as thought...
“Myelin is a relatively recent invention during evolution,” says Arlotta. “It’s thought that myelin allowed the brain to communicate really fast to the far reaches of the body, and that it has endowed the brain with the capacity to compute higher-level functions.”
In fact, loss of myelin is a feature in a number of devastating diseases, including multiple sclerosis and schizophrenia.
But the new research shows that despite myelin’s essential roles in the brain, “some of the most evolved, most complex neurons of the nervous system have less myelin than older, more ancestral ones,” said Arlotta, co-director of the HSCI neuroscience program.
What this means, she said, is that the higher one looks in the cerebral cortex — closer to the top of the brain, which is its most evolved part — the less myelin one finds. Not only that, but “neurons in this part of the brain display a brand-new way of positioning myelin along their axons that has not been previously seen. They have ‘intermittent myelin’ with long axon tracts that lack myelin interspersed among myelin-rich segments.”
“Contrary to the common assumptions that neurons use a universal profile of myelin distribution on their axons, the work indicates that different neurons choose to myelinate their axons differently,” Arlotta said. “In classic neurobiology textbooks, myelin is represented on axons as a sequence of myelinated segments separated by very short nodes that lack myelin. This distribution of myelin was tacitly assumed to be always the same, on every neuron, from the beginning to the end of the axon. This new work finds this not to be the case.”
Wiki: Phased Array