There is no shortage of Moon hoax ‘debunking’ sites out there on the wild and wooly World Wide Web. The majority of them are not particularly well written or argued and yet they tend to be rather smug and self-congratulatory. Most of them tend to stick to ‘debunking’ the same facts and they use the same arguments to do so.One thing they like to talk a lot about is the
Van Allen radiation belts. The Moon hoax sites talk a lot about them as well. The hoaxers will tell you that man cannot pass through the belts without a considerable amount of radiation protection – protection that could not have been provided in the 1960s through any known technology. And the ‘debunkers’ claim that the Apollo astronauts would have passed through the belts quickly enough that, given the levels of radiation, no harm would have come to them. The hoaxers, say the ‘debunkers,’ are just being girlie men.
As it turns out, both sides are wrong: the ‘debunkers,’ shockingly enough, are completely full of shit, and the hoaxers have actually understated the problem by focusing exclusively on the belts. We know this because NASA itself – whom the ‘debunkers’ like to treat as a virtually unimpeachable source on all things Apollo, except, apparently, when the agency posts an article that implicitly acknowledges that we haven’t actually been to the Moon – has told us that it is so. They have told us that in order to leave low-Earth orbit on any future space flights, our astronauts would need to be protected throughout the entirety of the flight, as well as – and once again, this comes directly from NASA – while working on the surface of the Moon.
On June 24, 2005, NASA made this rather remarkable admission: “NASA’s Vision for Space Exploration calls for a return to the Moon as preparation for even longer journeys to Mars and beyond. But there’s a potential showstopper: radiation. Space beyond low-Earth orbit is awash with intense radiation from the Sun and from deep galactic sources such as supernovas … Finding a good shield is important.”(
http://science.nasa.gov/headlines/y2005 ... tatics.htm)
[BSavant note: the above 'science.nasa.gov' link is no longer active/available, but I believe I found a duplicate copy here: https://science.nasa.gov/science-news/s ... trostatics. Noteworthy, given all this talk of radiation exposure, that the Apollo astronauts mostly all lived to ripe old age, and 4 of them are still alive as of March 2019.]You’re damn right finding a good shield is important!! Back in the 1960s, of course, we didn’t let a little thing like space radiation get in the way of us beating the Ruskies to the Moon. But now, I guess, being that we are more cultured and sophisticated, we want to do it the right way so we have to come up with some way of shielding our spaceships. And our temporary Moon bases. And figuring out how to do that, according to NASA, could be a real “showstopper.”
As NASA notes, “the most common way to deal with radiation is simply to physically block it, as the thick concrete around a nuclear reactor does. But making spaceships from concrete is not an option.” Lead, which is considerably denser than concrete, is actually the preferred material to use for radiation shielding, but lead also isn’t very popular with spaceship designers. In fact, word on the street is that one of the main reasons the Soviets never made it to the Moon was because their scientists calculated that four feet of lead shielding would be required to protect their astronauts, and those same scientists apparently felt that spaceships wouldn’t fly all that well when clad in four feet of lead.
Now NASA is thinking outside the box and contemplating using ‘force fields’ to repel the radiation, a seemingly ridiculous idea that, whether workable in the future or not, certainly wasn’t available to NASA in the 1960s. Below is NASA’s own artist rendering of a proposed ‘force field’ radiation shield that would allow astronauts to work safely on the Moon. As you may have noticed in the earlier photos of the lunar modules, our guys didn’t bring anything like that with them on their, uhmm, earlier missions to the Moon. And you may have also noticed that the modules did not have any type of physical shielding.

How then did they do it? My guess is that the answer lies in that gold foil wrap. While it may look like an amateurish attempt to make the modules appear more ‘high-tech,’ I have a hunch that what we are looking at is
another example of the lost technology of the 1960s – this time in the form of a highly-advanced superpolymer that provided maximum radiation shielding while adding virtually no weight. So all we have to do is track down a few leftover rolls of that stuff and we should be well on our way to sending guys back to the Moon.
According to Charles Buhler, a NASA scientist currently working on the force field concept, “Using electric fields to repel radiation was one of the first ideas back in the 1950s, when scientists started to look at the problem of protecting astronauts from radiation. They quickly dropped the idea though because it seemed like the high voltages needed and the awkward designs that they thought would be necessary … would make such an electric shield impractical.”
What a real journalist would have asked here, of course, is: “After dropping the electric shield concept, exactly what did they decide to use to get our astronauts safely to the Moon and back on the Apollo missions? And why can’t we do the same thing now, rather than reinventing the wheel? Don’t you guys have some of that gold foil in a closet somewhere?” No one in the American media, of course, bothered to ask such painfully obvious questions.
The 2005 report from NASA ends as follows: “But, who knows, perhaps one day astronauts on the Moon … will work safely.” Yes, and while we’re dreaming the impossible dream, let’s add a few more things to our wish list as well, like perhaps one day we’ll be able to listen to music on 8-track tape players, and talk to people on rotary dial telephones, and carry portable transistor radios, and use cameras that shoot pictures on special film that develops right before our eyes. Only time will tell, I suppose.
The Van Allen belts, by the way, trap most Earth-bound radiation, thus making it safe for us mortals down here on the surface of planet Earth, as well as for astronauts in low-Earth orbit (the belts extend from 1,000 to 25,000 miles above the surface of the Earth). The danger is in sending men through and beyond the belts, which, apart from the Apollo missions, has never been attempted …